The Erik Synchronization Protocol for use with the RPKI

Job Snijders job@sobornost.net

I am Job Snijders

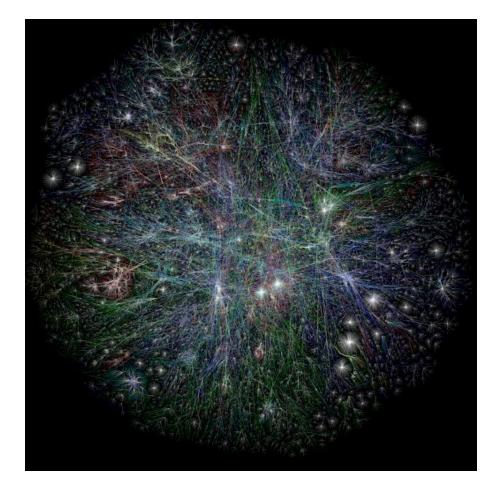
Hacker

Hiker

IETF RFC author (BGP & RPKI)

OpenBSD Developer

Internet Routing expert



Introduction

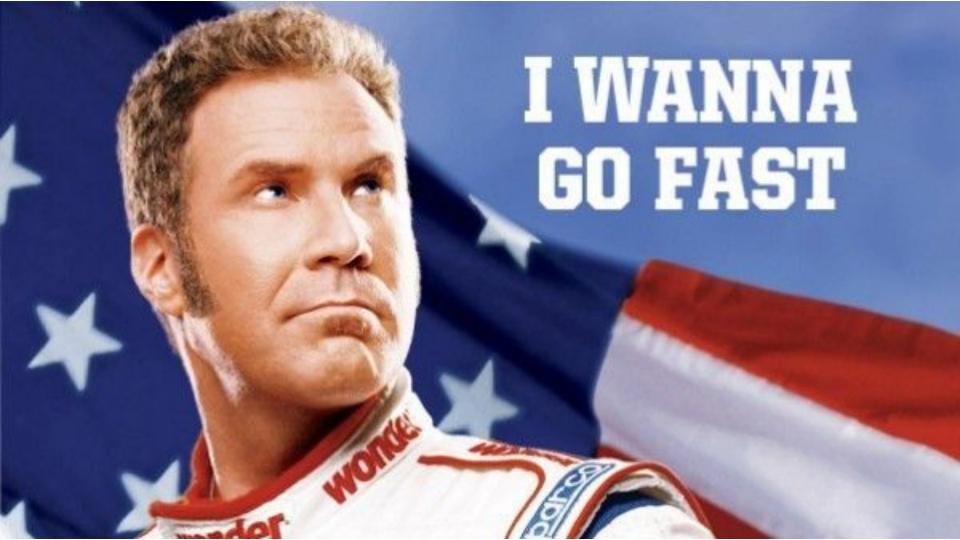
BGP is used to glue it all together.

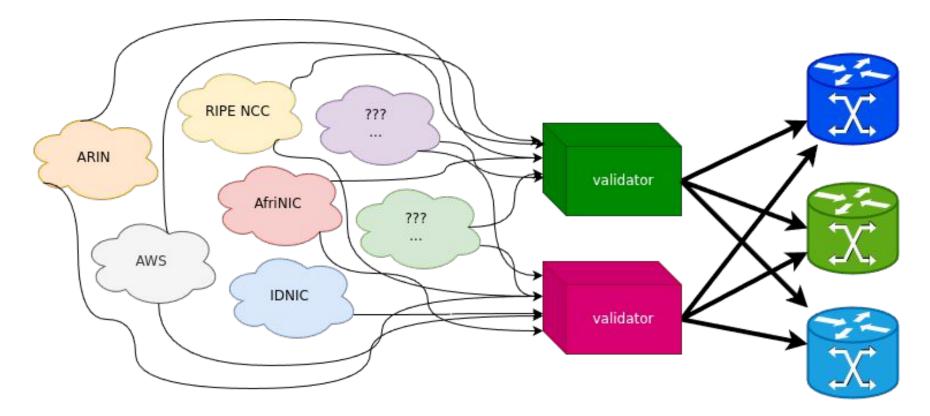
RPKI is how we secure the Internet's routing system.

RPKI is a distributed cryptographically verifiable database.

Why any of this matters?

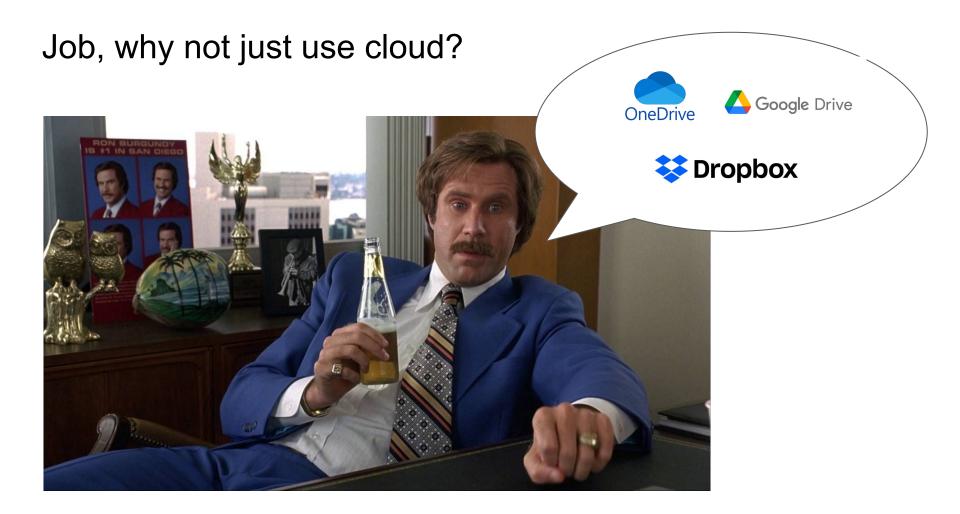
To make use of RPKI, the data needs to be distributed (obviously!)


It takes **between 10 and 60 minutes** for new RPKI to propagate: <u>https://www.iijlab.net/en/members/romain/pdf/romain_pam23.pdf</u>



High level overview of RPKI data supply chain

RPKI Repositories \rightarrow Rsync / RRDP \rightarrow Validators \rightarrow BGP Routers



Delay factors:

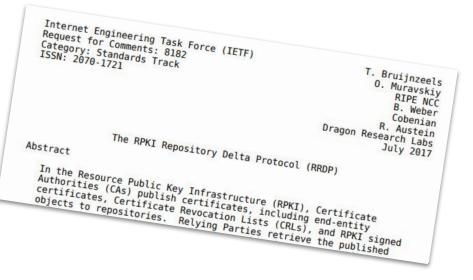
Single-source... Latency... Congestion... Certification... Timers...

Proportions of the RPKI distribution problem space

Count: the RPKI database currently is ~ **500,000** tiny files

Churn: ~ half those files change at least once a day

Total size: ~ 1.1 gigabytes


Consumers: ~ 5000 validators

Trend: up and to the right

https://labs.ripe.net/author/job_snijders/rpkis-2024-year-in-review/

So, what's used to distribute RPKI data today?

But... rsync is efficient, right?!

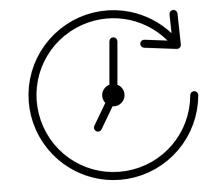
Yes and no!

Rsync is efficient because it transfers "only the difference"...

But, calculating the difference also consumes CPU & network resources!

Measuring Rsync

Interval	Bandwidth consumption
Minimum	~ 4 megabytes
Rsync every 15 minutes	~ 40 megabytes
Rsync every 60 minutes	~ 52 megabytes



RRDP in a nutshell

- HTTP-based protocol, static pre-calculated content
- All add/update/delete operations are written into a "journal"
- Validators download the "journal" and replay it

Consequence:

Download of lots of data already overtaken by events

Measuring RRDP

Interval	Bandwidth consumption
Minimum	~ 0.5 megabytes
RRDP every 15 minutes	~ 5 megabytes
RRDP every 60 minutes	~ 100 megabytes

Comparing Rsync and RRDP

Interval	Rsync	RRDP
Minimum	~ 4 megabytes	<mark>~ 0.5 MB</mark>
Every 15 minutes	~ 40 megabytes	<mark>~ 5 MB</mark>
Every 60 minutes	 ~ 50 megabytes 	~ 100 MB

Design issues

- Rsync servers vulnerable to denial of service (CPU hogging)
- RRDP servers can DoS clients (disk space hogging)
- RRDP "loss of state" \rightarrow reinitialize through full download
- RRDP desynchronization can cause "Thundering herds"
- A slow server slows down parts of the system

Neither protocol really is optimal

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

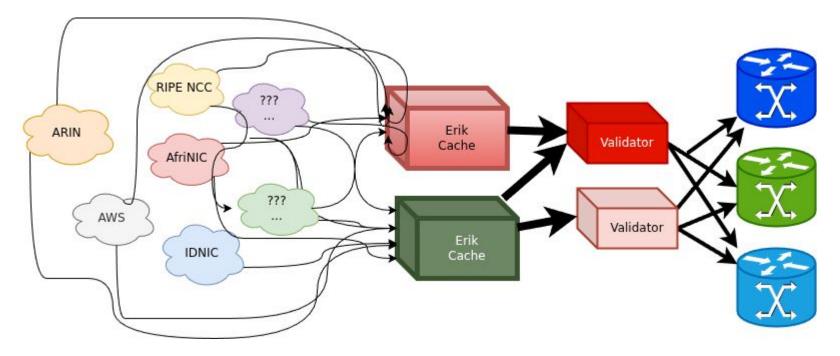
SITUATION: THERE ARE 14 COMPETING STANDARDS.

14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

SITUATION: THERE ARE 15 COMPETING STANDARDS.

What *is* the Erik Synchronization Protocol?

A data replication system using the following components:


- Merkle Trees (1979)
- Content-addressable naming scheme (1950s?)
- Timestamp-based concurrency control (1975)
- HTTP transport (1989)

Named in honor of Erik Bais who passed away in 2024.

Erik Protocol architecture: CDNify "everyone"

Repositories \rightarrow *Rsync* / *RRDP* \rightarrow **Erik** \rightarrow Validators \rightarrow BGP Routers

Advantages of the Erik Synchronization Protocol

- Clients "jump to latest" (like Rsync)
- Download "only what changed" (like Rsync)
- Static pre-calculated content (like RRDP)
- HTTP-based (like RRDP)
- Light on state, no "session" (like Rsync, unlike RRDP)
- Easy to combine with existing protocols (like Rsync, unlike RRDP)
- EFFICIENT
- FAST
- CHEAP

Erik servers are accelerators!

Comparing Rsync and RRDP and Erik

Interval	Rsync	RRDP	Erik
Minimum	~ 4 megabytes	<mark>~ 0.5 MB</mark>	<mark>~ 0.5 MB</mark>
Every 15 minutes	~ 40 megabytes	~ 5 MB	<mark>~ 4 MB</mark>
Every 60 minutes	~ 50 megabytes	~ 100 MB	<mark>~ 20 MB</mark>

Todo list

- Write IETF draft
- Write software
- Measure
- Experiment
- Optimize
- Iterate
- Deploy

Workgroup: Published: Intended Status: Expires: Authors:	SIDROPS 1 June 2025 Standards Track 3 December 2025 J. Snijders T. Bruije
	RIPE NCC T. Harrison
The Full	
Erik Sy	Inchronized:
Resource D	Inchronization Protocol for use with the Public Key Infrastructure (RPKI)
	ublic Key Infraction of the with the
	y in astructure (Ppy)
bstract	(NPKI)
interest	
is document specifie PKI). Erik Synchroniza dressable naming sch abine information ret gn is intended to be	es the Erik Synchronization Protocol for use with the Resource Public Key Infrastructure ation can be characterized as a data replication system using merkle trees, a content- neme, timestamp-based concurrency control, and HTTP transport. Relying Parties can trieved via Erik Synchronization with other RPKI transport protocols. The protocols
is document specifie PKI). Erik Synchroniza Iressable naming sch Ibine information ret gn is intended to be	es the Erik Synchronization Protocol for use with the Resource Public Key Infrastructure ation can be characterized as a data replication system using merkle trees, a content- neme, timestamp-based concurrency control, and HTTP transport. Relying Parties can trieved via Erik Synchronization with other RPKI transport protocols. The protocols
is document specifie (KI). Erik Synchroniza Iressable naming sch Ibine information ret gn is intended to be	es the Erik Synchronization Protocol for use with the Resource Public Key Infrastructure ation can be characterized as a data replication system using merkle trees, a content- neme, timestamp-based concurrency control, and HTTP transport. Relying Parties can trieved via Erik Synchronization with other RPKI transport protocols. The protocols
is document specifie PKI). Erik Synchroniza dressable naming sch abine information ret gn is intended to be	es the Erik Synchronization Protocolog

How can you help?

Sponsor me!

Help pay for my food & mortgage <u>https://sobornost.net/~job/</u>

Review the specification https://github.com/job/draft-rpki-erik-protocol/

Donate compute / network resources for research! HORSEPOWER!!!!

